We show how the geometry of a 1-motive M (that is existence of endomorphisms and relations between the points defining it) determines the dimension of its motivic Galois group Galmot(M). Fixing periods matrices Pi_M and Pi_{M^*} associated respectively to a 1-motive M and to its Cartier dual M^*, we describe the action of the Mumford-Tate group of M on these matrices. In the semi-elliptic case, according to the geometry of M we classify polynomial relations between the periods of M and we compute exhaustively the matrices representing the Mumford-Tate group of M. This representation brings new light on Grothendieck periods conjecture in the case of 1-motives.

Mumford-Tate groups of 1-motives and Weil pairing

Bertolin, cristiana
Writing – Review & Editing
;
2024

Abstract

We show how the geometry of a 1-motive M (that is existence of endomorphisms and relations between the points defining it) determines the dimension of its motivic Galois group Galmot(M). Fixing periods matrices Pi_M and Pi_{M^*} associated respectively to a 1-motive M and to its Cartier dual M^*, we describe the action of the Mumford-Tate group of M on these matrices. In the semi-elliptic case, according to the geometry of M we classify polynomial relations between the periods of M and we compute exhaustively the matrices representing the Mumford-Tate group of M. This representation brings new light on Grothendieck periods conjecture in the case of 1-motives.
File in questo prodotto:
File Dimensione Formato  
JPAA3-WeilPairing.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 736.42 kB
Formato Adobe PDF
736.42 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3513143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact