The direct synthesis of H2O2 is nowadays a hotspot in heterogeneous catalysis. The reaction is promoted by Pd nanoparticles supported on a porous material, strongly affecting the catalytic performance. Nanostructured Pd supported on ion -exchange resins shows remarkable catalytic activity, as compared to catalysts supported on inorganic materials. Novel catalysts supported by a highly accessible cross -linked polymer have been developed, by using a mesoporous form of polydivinylbenzene (pDVB). Different sulfonation procedures lead to different morphology and reactivity of the supports, hence to different performances of palladium catalysts supported thereby. XRD suggests the formation of palladium hydride during the metal precursor reduction with H2. This phase is stable under laboratory conditions for several weeks, but its catalytic role, if any, also depends on other conditions, such as the presence of sulfonic groups. EPR of the spent catalysts points out radical species, suggesting the participation of pDVB in the formation of H2O2.
Radical reactivity of mesoporous sulfonic polydivinylbenzene as the catalytic support in the direct synthesis of hydrogen peroxide and its role in the formation of palladium hydrides
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Zorzi, F.;Franco, L.;Zecca, M.;Centomo, P.
	
		
		
	
			2024
Abstract
The direct synthesis of H2O2 is nowadays a hotspot in heterogeneous catalysis. The reaction is promoted by Pd nanoparticles supported on a porous material, strongly affecting the catalytic performance. Nanostructured Pd supported on ion -exchange resins shows remarkable catalytic activity, as compared to catalysts supported on inorganic materials. Novel catalysts supported by a highly accessible cross -linked polymer have been developed, by using a mesoporous form of polydivinylbenzene (pDVB). Different sulfonation procedures lead to different morphology and reactivity of the supports, hence to different performances of palladium catalysts supported thereby. XRD suggests the formation of palladium hydride during the metal precursor reduction with H2. This phase is stable under laboratory conditions for several weeks, but its catalytic role, if any, also depends on other conditions, such as the presence of sulfonic groups. EPR of the spent catalysts points out radical species, suggesting the participation of pDVB in the formation of H2O2.| File | Dimensione | Formato | |
|---|---|---|---|
| 1-s2.0-S0926860X24000747-main.pdf Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
										Dimensione
										6.42 MB
									 
										Formato
										Adobe PDF
									 | 6.42 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




