In this paper we investigate the behavior of the bridges of a Markov counting process in several directions. We first characterize convexity(concavity) in time of the mean value in terms of lower (upper) bounds on the so called reciprocal characteristics. This result gives a natural criterion to determine whether bridges are "lazy" or "hurried". Under the hypothesis of global bounds on the reciprocal characteristics we prove sharp estimates for the marginal distributions and a comparison theorem for the jump times. When the height of the bridge tends to infinity we show the convergence to a deterministic curve, after a proper rescaling.

Bridges of Markov counting processes: quantitative estimates

Conforti, Giovanni
2016

Abstract

In this paper we investigate the behavior of the bridges of a Markov counting process in several directions. We first characterize convexity(concavity) in time of the mean value in terms of lower (upper) bounds on the so called reciprocal characteristics. This result gives a natural criterion to determine whether bridges are "lazy" or "hurried". Under the hypothesis of global bounds on the reciprocal characteristics we prove sharp estimates for the marginal distributions and a comparison theorem for the jump times. When the height of the bridge tends to infinity we show the convergence to a deterministic curve, after a proper rescaling.
File in questo prodotto:
File Dimensione Formato  
conforti2016bridges.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 497.55 kB
Formato Adobe PDF
497.55 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3514236
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact