Many Dirichlet series of number theoretic interest can be written as a product of generating series $\zeta_{\,d,a}(s)=\prod\limits_{p\equiv a\pmod{d}}(1-p^{-s})^{-1}$, with $p$ ranging over all the primes in the primitive residue class modulo $a\pmod{d}$, and a function $H(s)$ well-behaved around $s=1$. In such a case the corresponding Euler constant can be expressed in terms of the Euler constants $\gamma(d,a)$ of the series $\zeta_{\,d,a}(s)$ involved and the (numerically more harmless) term $H'(1)/H(1)$. Here we systematically study $\gamma(d,a)$, their numerical evaluation and discuss some examples.
Euler constants from primes in arithmetic progression
Alessandro Languasco
;
2026
Abstract
Many Dirichlet series of number theoretic interest can be written as a product of generating series $\zeta_{\,d,a}(s)=\prod\limits_{p\equiv a\pmod{d}}(1-p^{-s})^{-1}$, with $p$ ranging over all the primes in the primitive residue class modulo $a\pmod{d}$, and a function $H(s)$ well-behaved around $s=1$. In such a case the corresponding Euler constant can be expressed in terms of the Euler constants $\gamma(d,a)$ of the series $\zeta_{\,d,a}(s)$ involved and the (numerically more harmless) term $H'(1)/H(1)$. Here we systematically study $\gamma(d,a)$, their numerical evaluation and discuss some examples.| File | Dimensione | Formato | |
|---|---|---|---|
|
mcom4057.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
375.3 kB
Formato
Adobe PDF
|
375.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2406.16547v2.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
472.21 kB
Formato
Adobe PDF
|
472.21 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




