Background: The standard artificial urinary sphincter (AUS) is an implantable device for the treatment of urinary incontinence by applying a pressure loading around the urethra through an inflatable cuff, often inducing no-physiological stimulation up to tissue degenerative phenomena. A novel in silico approach is proposed to fill the gap of the traditional procedures by providing tools to quantitatively assess AUS reliability and performance based on AUS-urethra interaction. Methods: The approach requires the development of 3D numerical models of AUS and urethra, and experimental investigations to define their mechanical behaviors. Computational analyses are performed to simulate the urethral lumen occlusion by AUS inflation under different pressures, and the lumen opening by applying an intraluminal pressure progressively increased under the AUS action (Abaqus Explicit solver). The AUS reliability is evaluated in terms of tissue stimulation by the mechanical fields potentially responsible for vasoconstriction and tissue damage, while the performance by the intraluminal pressure that causes the lumen opening for a specific occlusive pressure, showing the maximum urethral pressure for which continence is guaranteed. Results: The present study implemented the procedure considering the gold standard AMS 800 and a novel patented AUS. Results provided the comparison between two sphincteric devices and the evaluation of the influence of different building materials and geometrical features on the AUS functionality. Conclusions: The approach was developed for the AUS, but it could be adapted also to artificial sphincters for the treatment of other anatomical dysfunctions, widening the analyzable device configurations and reducing experimental and ethical efforts.
In silico assessment of the reliability and performance of artificial sphincter for urinary incontinence
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Mascolini, Maria Vittoria
;Carniel, Emanuele Luigi
			2024
Abstract
Background: The standard artificial urinary sphincter (AUS) is an implantable device for the treatment of urinary incontinence by applying a pressure loading around the urethra through an inflatable cuff, often inducing no-physiological stimulation up to tissue degenerative phenomena. A novel in silico approach is proposed to fill the gap of the traditional procedures by providing tools to quantitatively assess AUS reliability and performance based on AUS-urethra interaction. Methods: The approach requires the development of 3D numerical models of AUS and urethra, and experimental investigations to define their mechanical behaviors. Computational analyses are performed to simulate the urethral lumen occlusion by AUS inflation under different pressures, and the lumen opening by applying an intraluminal pressure progressively increased under the AUS action (Abaqus Explicit solver). The AUS reliability is evaluated in terms of tissue stimulation by the mechanical fields potentially responsible for vasoconstriction and tissue damage, while the performance by the intraluminal pressure that causes the lumen opening for a specific occlusive pressure, showing the maximum urethral pressure for which continence is guaranteed. Results: The present study implemented the procedure considering the gold standard AMS 800 and a novel patented AUS. Results provided the comparison between two sphincteric devices and the evaluation of the influence of different building materials and geometrical features on the AUS functionality. Conclusions: The approach was developed for the AUS, but it could be adapted also to artificial sphincters for the treatment of other anatomical dysfunctions, widening the analyzable device configurations and reducing experimental and ethical efforts.| File | Dimensione | Formato | |
|---|---|---|---|
| Artificial Organs - 2024 - Mascolini - In silico assessment of the reliability and performance of artificial sphincter for (5).pdf Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
										Dimensione
										19.08 MB
									 
										Formato
										Adobe PDF
									 | 19.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




