In this paper we prove that a totally integrable strictly-convex symplectic billiard table, whose boundary has everywhere strictly positive curvature, must be an ellipse. The proof, inspired by the analogous result of Bialy for Birkhoff billiards, uses the affine equivariance of the symplectic billiard map. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).

Totally integrable symplectic billiards are ellipses

Baracco, Luca;Bernardi, Olga
2024

Abstract

In this paper we prove that a totally integrable strictly-convex symplectic billiard table, whose boundary has everywhere strictly positive curvature, must be an ellipse. The proof, inspired by the analogous result of Bialy for Birkhoff billiards, uses the affine equivariance of the symplectic billiard map. (c) 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0001870824003888-main (1).pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 351.23 kB
Formato Adobe PDF
351.23 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3523841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact