The 10B(p,α)7Be reaction is the main responsible for the 10B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10B(p,α)7Be reaction was studied via the Trojan Horse Method (THM) applied to the 2H(10B,α7Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV.
The 10B(p, α)7Be S(E)-factor from 5 keV to 1.5 MeV using the Trojan Horse Method
Caciolli A.;
2017
Abstract
The 10B(p,α)7Be reaction is the main responsible for the 10B destruction in stellar interior [1]. In such environments this p-capture process occurs at a Gamow energy of 10 keV and takes places mainly through a resonant state (Ex = 8.701 MeV) of the compound 11C nucleus. Thus a resonance right in the region of the Gamow peak is expected to significantly influence the behavior of the astrophysical S(E)-factor. The 10B(p,α)7Be reaction was studied via the Trojan Horse Method (THM) applied to the 2H(10B,α7Be)n in order to extract the astrophysical S(E)-factor in a wide energy range from 5 keV to 1.5 MeV.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
unpaywall-bitstream-864516585
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
142.12 kB
Formato
Unknown
|
142.12 kB | Unknown | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.