: Aggressive bark beetle species such as the Eurasian spruce bark beetle Ips typographus play a fundamental role in forest ecosystems but can also lead to extensive forest mortality and massive economic damage during outbreaks. Currently I. typographus' eyes, visual perception of the world and recognition of specific targets like host plants are understudied topics. Studying its visual sense can open the way to novel efficient monitoring and management methods, particularly important in avoiding the switch from an endemic to an epidemic condition. In addition, the integration of visual cues in trapping systems may offer new opportunities for surveillance. Vision in I. typographus was investigated by means of morphological analysis, electroretinography (ERG), molecular analysis of opsin genes and behavioural tests. ERG has revealed that the compound eyes contain two classes of photoreceptors, maximally sensitive to UV and green at 370 and 530 nm, respectively. The result was further supported by the identification of two relevant opsin genes. Finally, the innate wavelength sensitivity was tested in a Y-maze. Ips typographus consistently preferred UV over non-UV (VIS) light, irrespective of their intensity ratios, but preferred high over low intensity VIS light, consistent with a UV-VIS dichromatic visual system. Overall, the results may open the way to better understand the navigation pattern in tree canopies and the host selection processes of this ecologically and economically important beetle species.
Ips typographus vision system: a comprehensive study
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Morgante, Giuseppe
;Negrisolo, Enrico;Battisti, AndreaMembro del Collaboration Group
	
		
		
	
			2025
Abstract
: Aggressive bark beetle species such as the Eurasian spruce bark beetle Ips typographus play a fundamental role in forest ecosystems but can also lead to extensive forest mortality and massive economic damage during outbreaks. Currently I. typographus' eyes, visual perception of the world and recognition of specific targets like host plants are understudied topics. Studying its visual sense can open the way to novel efficient monitoring and management methods, particularly important in avoiding the switch from an endemic to an epidemic condition. In addition, the integration of visual cues in trapping systems may offer new opportunities for surveillance. Vision in I. typographus was investigated by means of morphological analysis, electroretinography (ERG), molecular analysis of opsin genes and behavioural tests. ERG has revealed that the compound eyes contain two classes of photoreceptors, maximally sensitive to UV and green at 370 and 530 nm, respectively. The result was further supported by the identification of two relevant opsin genes. Finally, the innate wavelength sensitivity was tested in a Y-maze. Ips typographus consistently preferred UV over non-UV (VIS) light, irrespective of their intensity ratios, but preferred high over low intensity VIS light, consistent with a UV-VIS dichromatic visual system. Overall, the results may open the way to better understand the navigation pattern in tree canopies and the host selection processes of this ecologically and economically important beetle species.| File | Dimensione | Formato | |
|---|---|---|---|
| 2024 Morgante et al. Ips vision J Comp Physiol A.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										2.09 MB
									 
										Formato
										Adobe PDF
									 | 2.09 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




