We consider the continuum version of the random field Ising model in one dimension: this model arises naturally as weak disorder scaling limit of the original Ising model. Like for the Ising model, a spin configuration is conveniently described as a sequence of spin domains with alternating signs (domain-wall structure). We show that for fixed centered external field and as spin-spin couplings become large, the domain-wall structure scales to a disorder dependent limit that coincides with the infinite disorder fixed point process introduced by D. S. Fisher in the context of zero temperature quantum Ising chains. In particular, our results establish a number of predictions that one can find in Fisher et al. (Phys Rev E 64:41, 2001). The infinite disorder fixed point process for centered external field is equivalently described in terms of the process of suitably selected extrema of a Brownian trajectory introduced and studied by Neveu and Pitman (in: Séminaire de probabilités XXIII. Lec...

Infinite disorder renormalization fixed point for the continuum random field Ising chain

Giacomin G.
;
2024

Abstract

We consider the continuum version of the random field Ising model in one dimension: this model arises naturally as weak disorder scaling limit of the original Ising model. Like for the Ising model, a spin configuration is conveniently described as a sequence of spin domains with alternating signs (domain-wall structure). We show that for fixed centered external field and as spin-spin couplings become large, the domain-wall structure scales to a disorder dependent limit that coincides with the infinite disorder fixed point process introduced by D. S. Fisher in the context of zero temperature quantum Ising chains. In particular, our results establish a number of predictions that one can find in Fisher et al. (Phys Rev E 64:41, 2001). The infinite disorder fixed point process for centered external field is equivalently described in terms of the process of suitably selected extrema of a Brownian trajectory introduced and studied by Neveu and Pitman (in: Séminaire de probabilités XXIII. Lec...
File in questo prodotto:
File Dimensione Formato  
s00440-024-01284-2.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri   Richiedi una copia
unpaywall-bitstream-1961802911.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536187
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact