In the development of data-driven soft sensors for product quality assessment in multi-unit manufacturing processes, the only information that is typically used as an input to the model is real-time measurements from field sensors. However, even if detailed knowledge of the mechanistic behavior of the process may not be available, information about the sequence of processing units, and their connectivity, is available, typically in graphical form through process flow diagrams. In this study, we investigate the use of sequential-orthogonalized partial least-squares (SO-PLS) regression as a way to capture connectivity information from a process flow diagram, and transfer it into a data-driven model to be used as a soft sensor in a multi-unit process. Connectivity between units is captured and translated into a block order that establishes a sequence for block regressions. Orthogonalization between two blocks is then carried out with the aim of eliminating overlapping data and retaining information that is unique to each block. Product quality is finally predicted by summing the contributions from each block, and the accuracy of prediction is enhanced due to the embedded dual feature-extraction procedure, which combines orthogonalization and latent-variable extraction. The effectiveness of the proposed approach is illustrated by comparing the quality prediction performance of two soft sensors for a simulated multiunit continuous process: one using standard PLS and one using SO-PLS. Superior performance of the SO-PLS soft sensor is achieved, even more markedly so when fewer field measurements are available to build the soft sensor.
Capturing connectivity information from process flow diagrams by sequential-orthogonalized PLS to improve soft-sensor performance
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Facco, Pierantonio;Barolo, Massimiliano
	
		
		
	
			2024
Abstract
In the development of data-driven soft sensors for product quality assessment in multi-unit manufacturing processes, the only information that is typically used as an input to the model is real-time measurements from field sensors. However, even if detailed knowledge of the mechanistic behavior of the process may not be available, information about the sequence of processing units, and their connectivity, is available, typically in graphical form through process flow diagrams. In this study, we investigate the use of sequential-orthogonalized partial least-squares (SO-PLS) regression as a way to capture connectivity information from a process flow diagram, and transfer it into a data-driven model to be used as a soft sensor in a multi-unit process. Connectivity between units is captured and translated into a block order that establishes a sequence for block regressions. Orthogonalization between two blocks is then carried out with the aim of eliminating overlapping data and retaining information that is unique to each block. Product quality is finally predicted by summing the contributions from each block, and the accuracy of prediction is enhanced due to the embedded dual feature-extraction procedure, which combines orthogonalization and latent-variable extraction. The effectiveness of the proposed approach is illustrated by comparing the quality prediction performance of two soft sensors for a simulated multiunit continuous process: one using standard PLS and one using SO-PLS. Superior performance of the SO-PLS soft sensor is achieved, even more markedly so when fewer field measurements are available to build the soft sensor.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											1-s2.0-S0169743924001321-main.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										5.89 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								5.89 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




