We are reporting here on a series of theoretical investigations with both algebraic models and geometric cluster models of alpha clusters in 12 C, focusing on the structure of the ground state, the first excited 0 + state and the second excited 2 + state with the purpose, in particular, of establishing if the rotational bands are compatible with rigid structures or rather if they are quantum mixture of different configurations. In a first series of paper (Vitturi et al., Transition densities and form factors in the triangular α -cluster model of 12C with application to 12C+ α scattering. Phys Rev C 101:014315, 2020; Casal et al., Alpha-induced inelastic scattering and alpha-transfer reactions in 12C and 16O within the Algebraic Cluster Model. Eur Phys J A 57:33, 2021), we assume a rigid equilateral triangle shape and study in detail several properties that descend from the algebraic framework, such as the energy spectrum, electromagnetic observables and calculate the transition densities in order to extract elastic and inelastic cross-sections for various processes. In a second series of papers (Moriya et al., Three- α Configurations in the 0 + States of 12C. Few-Body Syst 62:46, 2021; Moriya et al., Three- α configurations of the second Jπ = 0 + state in 12C. Eur. Phys J A 59:37, 2023), we solve the three-body Schrödinger equation with orthogonality conditions using the stochastic variational method with correlated Gaussian basis functions. The two-body density distributions indicate that the main configurations of both the 02+ and 22+ states are acute iscosceles triangle shapes coming from 8 Be(0 + )+ α configurations and find some hints that the second 2 + state is not an ideal rigid rotational band member of the Hoyle state band.

Detailed Studies of 12C Structure and Reactions

Fortunato L.
2024

Abstract

We are reporting here on a series of theoretical investigations with both algebraic models and geometric cluster models of alpha clusters in 12 C, focusing on the structure of the ground state, the first excited 0 + state and the second excited 2 + state with the purpose, in particular, of establishing if the rotational bands are compatible with rigid structures or rather if they are quantum mixture of different configurations. In a first series of paper (Vitturi et al., Transition densities and form factors in the triangular α -cluster model of 12C with application to 12C+ α scattering. Phys Rev C 101:014315, 2020; Casal et al., Alpha-induced inelastic scattering and alpha-transfer reactions in 12C and 16O within the Algebraic Cluster Model. Eur Phys J A 57:33, 2021), we assume a rigid equilateral triangle shape and study in detail several properties that descend from the algebraic framework, such as the energy spectrum, electromagnetic observables and calculate the transition densities in order to extract elastic and inelastic cross-sections for various processes. In a second series of papers (Moriya et al., Three- α Configurations in the 0 + States of 12C. Few-Body Syst 62:46, 2021; Moriya et al., Three- α configurations of the second Jπ = 0 + state in 12C. Eur. Phys J A 59:37, 2023), we solve the three-body Schrödinger equation with orthogonality conditions using the stochastic variational method with correlated Gaussian basis functions. The two-body density distributions indicate that the main configurations of both the 02+ and 22+ states are acute iscosceles triangle shapes coming from 8 Be(0 + )+ α configurations and find some hints that the second 2 + state is not an ideal rigid rotational band member of the Hoyle state band.
2024
File in questo prodotto:
File Dimensione Formato  
FBS_65(2024)_EFBS25_Mainz.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri   Richiedi una copia
unpaywall-bitstream--257313465.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Creative commons
Dimensione 389.15 kB
Formato Adobe PDF
389.15 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3539391
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact