We present comprehensive multicomponent dynamical models of M54 (NGC 6715), the nuclear star cluster of the Sagittarius (Sgr) dwarf galaxy, which is undergoing a tidal disruption in the Milky Way halo. Previous papers in this series used a large MUSE mosaic data set to identify multiple stellar populations in the system and study their kinematic differences. Here, we use Jeans-based dynamical models that fit the population properties (mean age and metallicity), spatial distributions, and kinematics simultaneously. They provide a solid physical explanation for our previous findings. Population-dynamical models deliver a comprehensive view of the whole system, and allow us to disentangle the different stellar populations. We explore their dynamical interplay and confirm our previous findings about the build-up of Sgr’s nuclear cluster via contributions from globular cluster stars, Sgr inner field stars, and in situ star formation. We explore various parameterizations of the gravitational potential and show the importance of a radially varying mass-to-light ratio for the proper treatment of the mass profile. We find a total dynamical mass within M54's tidal radius (∼75 pc) of 1.60 ± 0.07 × 106 M ⊙ in excellent agreement with N-body simulations. Metal-poor globular cluster stars contribute about 65% of the total mass or 1.04 ± 0.05 × 106 M ⊙. Metal-rich stars can be further divided into young and intermediate-age populations, which contribute 0.32 ± 0.02 × 106 M ⊙ (20%) and 0.24 ± 0.02 × 106 M ⊙ (15%), respectively. Our population-dynamical models successfully distinguish the different stellar populations in Sgr’s nucleus because of their different spatial distributions, ages, metallicities, and kinematic features.

A Deep View into the Nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. III. Discrete Multicomponent Population-dynamical Models Based on the Jeans Equations

Mastrobuono-Battisti A.
Membro del Collaboration Group
;
2022

Abstract

We present comprehensive multicomponent dynamical models of M54 (NGC 6715), the nuclear star cluster of the Sagittarius (Sgr) dwarf galaxy, which is undergoing a tidal disruption in the Milky Way halo. Previous papers in this series used a large MUSE mosaic data set to identify multiple stellar populations in the system and study their kinematic differences. Here, we use Jeans-based dynamical models that fit the population properties (mean age and metallicity), spatial distributions, and kinematics simultaneously. They provide a solid physical explanation for our previous findings. Population-dynamical models deliver a comprehensive view of the whole system, and allow us to disentangle the different stellar populations. We explore their dynamical interplay and confirm our previous findings about the build-up of Sgr’s nuclear cluster via contributions from globular cluster stars, Sgr inner field stars, and in situ star formation. We explore various parameterizations of the gravitational potential and show the importance of a radially varying mass-to-light ratio for the proper treatment of the mass profile. We find a total dynamical mass within M54's tidal radius (∼75 pc) of 1.60 ± 0.07 × 106 M ⊙ in excellent agreement with N-body simulations. Metal-poor globular cluster stars contribute about 65% of the total mass or 1.04 ± 0.05 × 106 M ⊙. Metal-rich stars can be further divided into young and intermediate-age populations, which contribute 0.32 ± 0.02 × 106 M ⊙ (20%) and 0.24 ± 0.02 × 106 M ⊙ (15%), respectively. Our population-dynamical models successfully distinguish the different stellar populations in Sgr’s nucleus because of their different spatial distributions, ages, metallicities, and kinematic features.
File in questo prodotto:
File Dimensione Formato  
Kacharov_2022_ApJ_939_118 (1).pdf

accesso aperto

Descrizione: published version
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.08 MB
Formato Adobe PDF
3.08 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3539633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact