Integrating collaborative robots into assembly lines represents a significant opportunity for industries to execute tasks autonomously or support human workers in response to the advancements of Industry 4.0. Human-robot collaboration (HRC) is an appropriate solution to enhance the productivity of manual systems compared to traditional robots. However, to ensure the success of HRC implementation, it is necessary to investigate the production systems, considering several influencing factors. Workforce diversity can be mentioned as one of the factors since workers may possess different skills and experience levels, as well as varying levels of fatigue. Therefore, creating a realistic and effective optimization model that includes workforce diversity is crucial. This study proposes a mathematical model to optimize a human-robot collaborative assembly line performance to minimize the cycle time. The model integrates several collaborative scenarios (i.e. sequential, simultaneous, supportive...
Integrating collaboration scenarios and workforce individualization in collaborative assembly line balancing
Katiraee, Niloofar
;Finco, Serena;Calzavara, Martina
2024
Abstract
Integrating collaborative robots into assembly lines represents a significant opportunity for industries to execute tasks autonomously or support human workers in response to the advancements of Industry 4.0. Human-robot collaboration (HRC) is an appropriate solution to enhance the productivity of manual systems compared to traditional robots. However, to ensure the success of HRC implementation, it is necessary to investigate the production systems, considering several influencing factors. Workforce diversity can be mentioned as one of the factors since workers may possess different skills and experience levels, as well as varying levels of fatigue. Therefore, creating a realistic and effective optimization model that includes workforce diversity is crucial. This study proposes a mathematical model to optimize a human-robot collaborative assembly line performance to minimize the cycle time. The model integrates several collaborative scenarios (i.e. sequential, simultaneous, supportive...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0925527324003074-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
5.34 MB
Formato
Adobe PDF
|
5.34 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.