Integrating collaborative robots into assembly lines represents a significant opportunity for industries to execute tasks autonomously or support human workers in response to the advancements of Industry 4.0. Human-robot collaboration (HRC) is an appropriate solution to enhance the productivity of manual systems compared to traditional robots. However, to ensure the success of HRC implementation, it is necessary to investigate the production systems, considering several influencing factors. Workforce diversity can be mentioned as one of the factors since workers may possess different skills and experience levels, as well as varying levels of fatigue. Therefore, creating a realistic and effective optimization model that includes workforce diversity is crucial. This study proposes a mathematical model to optimize a human-robot collaborative assembly line performance to minimize the cycle time. The model integrates several collaborative scenarios (i.e. sequential, simultaneous, supportive...

Integrating collaboration scenarios and workforce individualization in collaborative assembly line balancing

Katiraee, Niloofar
;
Finco, Serena;Calzavara, Martina
2024

Abstract

Integrating collaborative robots into assembly lines represents a significant opportunity for industries to execute tasks autonomously or support human workers in response to the advancements of Industry 4.0. Human-robot collaboration (HRC) is an appropriate solution to enhance the productivity of manual systems compared to traditional robots. However, to ensure the success of HRC implementation, it is necessary to investigate the production systems, considering several influencing factors. Workforce diversity can be mentioned as one of the factors since workers may possess different skills and experience levels, as well as varying levels of fatigue. Therefore, creating a realistic and effective optimization model that includes workforce diversity is crucial. This study proposes a mathematical model to optimize a human-robot collaborative assembly line performance to minimize the cycle time. The model integrates several collaborative scenarios (i.e. sequential, simultaneous, supportive...
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0925527324003074-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.34 MB
Formato Adobe PDF
5.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3539868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact