We present a study of $\Xi_{c}^{0}\to\Xi^{0}\pi^{0}$, $\Xi_{c}^{0}\to\Xi^{0}\eta$, and $\Xi_{c}^{0}\to\Xi^{0}\eta^{\prime}$ decays using the Belle and Belle~II data samples, which have integrated luminosities of 980~$\mathrm{fb}^{-1}$ and 426~$\mathrm{fb}^{-1}$, respectively. We measure the following relative branching fractions $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\pi^{0})/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.48 \pm 0.02 ({\rm stat}) \pm 0.03 ({\rm syst}) ,$$ $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\eta)/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.11 \pm 0.01 ({\rm stat}) \pm 0.01 ({\rm syst}) ,$$ $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\eta^{\prime})/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.08 \pm 0.02 ({\rm stat}) \pm 0.01 ({\rm syst}) $$ for the first time, where the uncertainties are statistical ($\rm stat$) and systematic ($\rm syst$). By multiplying by the branching fraction of the normalization mode, ${\mathcal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})$, we obtain the following absolute branching fraction results $(6.9 \pm 0.3 ({\rm stat}) \pm 0.5 ({\rm syst}) \pm 1.3 ({\rm norm})) \times 10^{-3}$, $(1.6 \pm 0.2 ({\rm stat}) \pm 0.2 ({\rm syst}) \pm 0.3 ({\rm norm})) \times 10^{-3}$, and $(1.2 \pm 0.3 ({\rm stat}) \pm 0.1 ({\rm syst}) \pm 0.2 ({\rm norm})) \times 10^{-3}$, for $\Xi_{c}^{0}$ decays to $\Xi^{0}\pi^{0}$, $\Xi^{0}\eta$, and $\Xi^{0}\eta^{\prime}$ final states, respectively. The third errors are from the uncertainty on ${\mathcal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})$. The asymmetry parameter for $\Xi_{c}^{0}\to\Xi^{0}\pi^{0}$ is measured to be $\alpha(\Xi_{c}^{0}\to\Xi^{0}\pi^{0}) = -0.90\pm0.15({\rm stat})\pm0.23({\rm syst})$.

Measurements of the branching fractions of $Ξ_{c}^{0}\toΞ^{0}π^{0}$, $Ξ_{c}^{0}\toΞ^{0}η$, and $Ξ_{c}^{0}\toΞ^{0}η^{\prime}$ and asymmetry parameter of $Ξ_{c}^{0}\toΞ^{0}π^{0}$

A. Gaz;R. Stroili;
2024

Abstract

We present a study of $\Xi_{c}^{0}\to\Xi^{0}\pi^{0}$, $\Xi_{c}^{0}\to\Xi^{0}\eta$, and $\Xi_{c}^{0}\to\Xi^{0}\eta^{\prime}$ decays using the Belle and Belle~II data samples, which have integrated luminosities of 980~$\mathrm{fb}^{-1}$ and 426~$\mathrm{fb}^{-1}$, respectively. We measure the following relative branching fractions $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\pi^{0})/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.48 \pm 0.02 ({\rm stat}) \pm 0.03 ({\rm syst}) ,$$ $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\eta)/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.11 \pm 0.01 ({\rm stat}) \pm 0.01 ({\rm syst}) ,$$ $${\cal B}(\Xi_{c}^{0}\to\Xi^{0}\eta^{\prime})/{\cal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+}) = 0.08 \pm 0.02 ({\rm stat}) \pm 0.01 ({\rm syst}) $$ for the first time, where the uncertainties are statistical ($\rm stat$) and systematic ($\rm syst$). By multiplying by the branching fraction of the normalization mode, ${\mathcal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})$, we obtain the following absolute branching fraction results $(6.9 \pm 0.3 ({\rm stat}) \pm 0.5 ({\rm syst}) \pm 1.3 ({\rm norm})) \times 10^{-3}$, $(1.6 \pm 0.2 ({\rm stat}) \pm 0.2 ({\rm syst}) \pm 0.3 ({\rm norm})) \times 10^{-3}$, and $(1.2 \pm 0.3 ({\rm stat}) \pm 0.1 ({\rm syst}) \pm 0.2 ({\rm norm})) \times 10^{-3}$, for $\Xi_{c}^{0}$ decays to $\Xi^{0}\pi^{0}$, $\Xi^{0}\eta$, and $\Xi^{0}\eta^{\prime}$ final states, respectively. The third errors are from the uncertainty on ${\mathcal B}(\Xi_{c}^{0}\to\Xi^{-}\pi^{+})$. The asymmetry parameter for $\Xi_{c}^{0}\to\Xi^{0}\pi^{0}$ is measured to be $\alpha(\Xi_{c}^{0}\to\Xi^{0}\pi^{0}) = -0.90\pm0.15({\rm stat})\pm0.23({\rm syst})$.
2024
File in questo prodotto:
File Dimensione Formato  
paper52.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 946.64 kB
Formato Adobe PDF
946.64 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 3
social impact