We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).

A reverse Faber-Krahn inequality for the magnetic Laplacian

Lena, Corentin;
2024

Abstract

We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0021782424001302-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 571.44 kB
Formato Adobe PDF
571.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3541552
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact