We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).
A reverse Faber-Krahn inequality for the magnetic Laplacian
Lena, Corentin;
2024
Abstract
We consider the first eigenvalue of the magnetic Laplacian in a bounded and simply connected planar domain, with uniform magnetic field and Neumann boundary conditions. We investigate the reverse Faber-Krahn inequality conjectured by S. Fournais and B. Helffer, stating that this eigenvalue is maximized by the disk for a given area. Using the method of level lines, we prove the conjecture for small enough values of the magnetic field (those for which the corresponding eigenfunction in the disk is radial).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021782424001302-main.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
571.44 kB
Formato
Adobe PDF
|
571.44 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.