Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.

Kv1.3 K+ Channel Physiology Assessed by Genetic and Pharmacological Modulation

Varanita T.;Angi B.;Szabo I.
Writing – Original Draft Preparation
2023

Abstract

Potassium channels are widespread over all kingdoms and play an important role in the maintenance of cellular ionic homeostasis. Kv1.3 is a voltage-gated potassium channel of the Shaker family with a wide tissue expression and a well-defined pharmacology. In recent decades, experiments mainly based on pharmacological modulation of Kv1.3 have highlighted its crucial contribution to different fundamental processes such as regulation of proliferation, apoptosis, and metabolism. These findings link channel function to various pathologies ranging from autoimmune diseases to obesity and cancer. In the present review, we briefly summarize studies employing Kv1.3 knockout animal models to confirm such roles and discuss the findings in comparison to the results obtained by pharmacological modulation of Kv1.3 in various pathophysiological settings. We also underline how these studies contributed to our understanding of channel function in vivo and propose possible future directions.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3545376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex ND
social impact