Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).

The finite type of modules of bounded projective dimension and Serre's conditions

LE GROS, GIOVANNA G.
2024

Abstract

Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).
File in questo prodotto:
File Dimensione Formato  
2311.14346v1.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Altro
Dimensione 254.99 kB
Formato Adobe PDF
254.99 kB Adobe PDF Visualizza/Apri
Bulletin of London Math Soc - 2024 - Hrbek - The finite type of modules of bounded projective dimension and Serre s.pdf

Accesso riservato

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 274.66 kB
Formato Adobe PDF
274.66 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3545388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact