Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).
The finite type of modules of bounded projective dimension and Serre's conditions
LE GROS, GIOVANNA G.
2024
Abstract
Let (Formula presented.) be a commutative Noetherian ring. For a natural number (Formula presented.), we prove that the class of modules of projective dimension bounded by (Formula presented.) is of finite type if and only if (Formula presented.) satisfies Serre's condition (Formula presented.). In particular, this answers positively a question of Bazzoni and Herbera in the specific setting of a Gorenstein ring. Applying similar techniques, we also show that the (Formula presented.) -dimensional version of the Govorov–Lazard theorem holds if and only if (Formula presented.) satisfies the ‘almost’ Serre condition (Formula presented.).File | Dimensione | Formato | |
---|---|---|---|
2311.14346v1.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Altro
Dimensione
254.99 kB
Formato
Adobe PDF
|
254.99 kB | Adobe PDF | Visualizza/Apri |
Bulletin of London Math Soc - 2024 - Hrbek - The finite type of modules of bounded projective dimension and Serre s.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
274.66 kB
Formato
Adobe PDF
|
274.66 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.