We prove that the rational cohomology Hi(Tg; Q) of the moduli space of trigonal curves of genus g is independent of g in degree i < [g/4]. This makes possible to define the stable cohomology ring as H•(Tg; Q) for a sufficiently large g. We also compute the stable cohomology ring, which turns out to be isomorphic to the tautological ring. This is done by studying the embedding of trigonal curves in Hirzebruch surfaces and using Gorinov–Vassiliev’s method.

Stable Cohomology of the Moduli Space of Trigonal Curves

ZHENG Angelina
2024

Abstract

We prove that the rational cohomology Hi(Tg; Q) of the moduli space of trigonal curves of genus g is independent of g in degree i < [g/4]. This makes possible to define the stable cohomology ring as H•(Tg; Q) for a sufficiently large g. We also compute the stable cohomology ring, which turns out to be isomorphic to the tautological ring. This is done by studying the embedding of trigonal curves in Hirzebruch surfaces and using Gorinov–Vassiliev’s method.
File in questo prodotto:
File Dimensione Formato  
2106.07245v3.pdf

accesso aperto

Descrizione: preprint
Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 276.06 kB
Formato Adobe PDF
276.06 kB Adobe PDF Visualizza/Apri
rnad011.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 572.96 kB
Formato Adobe PDF
572.96 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3546601
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact