This study analyzes the current state of artificial intelligence (AI) technologies for addressing and mitigating climate change in the manufacturing sector and provides an outlook on future developments. The research is grounded in the concept of general-purpose technologies (GPTs), motivated by a still limited understanding of innovation patterns for this application context. To this end, we focus on global patenting activity between 2011 and 2023 (5,919 granted patents classified for “mitigation or adaptation against climate change” in the “production or processing of goods”). We examined time trends, applicant characteristics, and underlying technologies. A topic modeling analysis was performed to identify emerging themes from the unstructured textual data of the patent abstracts. This allowed the identification of six AI application domains. For each of them, we built a network analysis and ran growth trend and forecasting models. Our results show that patenting activities are mostly oriented toward improving the efficiency and reliability of manufacturing processes in five out of six identified domains (“predictive analytics”, “material sorting”, “defect detection”, “advanced robotics”, and “scheduling”). Instead, AI within the “resource optimization” domain relates to energy management, showing an interplay with other climate-related technologies. Our results also highlight interdependent innovations peculiar to each domain around core AI technologies. Forecasts show that the more specific technologies are within domains, the longer it will take for them to mature. From a practical standpoint, the study sheds light on the role of AI within the broader cleantech innovation landscape and urges policymakers to consider synergies. Managers can find information to define technology portfolios and alliances considering technological co-evolution.

Artificial intelligence for climate change: A patent analysis in the manufacturing sector

Podrecca, Matteo;
2024

Abstract

This study analyzes the current state of artificial intelligence (AI) technologies for addressing and mitigating climate change in the manufacturing sector and provides an outlook on future developments. The research is grounded in the concept of general-purpose technologies (GPTs), motivated by a still limited understanding of innovation patterns for this application context. To this end, we focus on global patenting activity between 2011 and 2023 (5,919 granted patents classified for “mitigation or adaptation against climate change” in the “production or processing of goods”). We examined time trends, applicant characteristics, and underlying technologies. A topic modeling analysis was performed to identify emerging themes from the unstructured textual data of the patent abstracts. This allowed the identification of six AI application domains. For each of them, we built a network analysis and ran growth trend and forecasting models. Our results show that patenting activities are mostly oriented toward improving the efficiency and reliability of manufacturing processes in five out of six identified domains (“predictive analytics”, “material sorting”, “defect detection”, “advanced robotics”, and “scheduling”). Instead, AI within the “resource optimization” domain relates to energy management, showing an interplay with other climate-related technologies. Our results also highlight interdependent innovations peculiar to each domain around core AI technologies. Forecasts show that the more specific technologies are within domains, the longer it will take for them to mature. From a practical standpoint, the study sheds light on the role of AI within the broader cleantech innovation landscape and urges policymakers to consider synergies. Managers can find information to define technology portfolios and alliances considering technological co-evolution.
File in questo prodotto:
File Dimensione Formato  
Podrecca et al., 2024 - IEEE TEM.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3547186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact