Electroencephalography (EEG) based braincomputer interfaces (BCIs) offer a promising way for individuals with motor impairments to control prosthetic or rehabilitation devices. Accurately decoding movement intention (MI) is crucial for translating subjects' motor execution plans into action. Common challenges in EEG-based BCIs include performance discrepancies, often requiring frequent recalibration of decoding algorithms. The objective of this study was enhancing BCI decoding performance of upper-limb MI identification by exploiting both machine and subjects learning and maintaining stable decoding algorithms. Significant performance improvements were observed across most subjects from the first to the last session of the experiment. Some subjects also demonstrated stable performance without requiring any model recalibration between sessions. All subjects achieved high efficacy in online decoding of movement intention, as reflected in improvement of the F1 score from 0.5810.26 in the first session, to 0.84±0.13 in the final session. We emphasize the critical importance of allowing users sufficient time to improve their performance in BCIs for upper-limb MI decoding. Unlike existing studies, we specifically evaluate the effect of stable decoding strategies in online and longitudinal BCI sessions, which are key to achieving more reliable and effective BCIs.

The Effect of User Learning for Online EEG Decoding of Upper-Limb Movement Intention

Tortora S.;Tonin L.
2025

Abstract

Electroencephalography (EEG) based braincomputer interfaces (BCIs) offer a promising way for individuals with motor impairments to control prosthetic or rehabilitation devices. Accurately decoding movement intention (MI) is crucial for translating subjects' motor execution plans into action. Common challenges in EEG-based BCIs include performance discrepancies, often requiring frequent recalibration of decoding algorithms. The objective of this study was enhancing BCI decoding performance of upper-limb MI identification by exploiting both machine and subjects learning and maintaining stable decoding algorithms. Significant performance improvements were observed across most subjects from the first to the last session of the experiment. Some subjects also demonstrated stable performance without requiring any model recalibration between sessions. All subjects achieved high efficacy in online decoding of movement intention, as reflected in improvement of the F1 score from 0.5810.26 in the first session, to 0.84±0.13 in the final session. We emphasize the critical importance of allowing users sufficient time to improve their performance in BCIs for upper-limb MI decoding. Unlike existing studies, we specifically evaluate the effect of stable decoding strategies in online and longitudinal BCI sessions, which are key to achieving more reliable and effective BCIs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3548665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact