The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1 R ⊕ planet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2 M ⊕. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.

The TESS-Keck Survey. XII. A Dense 1.8 R ⊕ Ultra-short-period Planet Possibly Clinging to a High-mean-molecular-weight Atmosphere after the First Gigayear

Malavolta, Luca;
2024

Abstract

The extreme environments of ultra-short-period planets (USPs) make excellent laboratories to study how exoplanets obtain, lose, retain, and/or regain gaseous atmospheres. We present the confirmation and characterization of the USP TOI-1347 b, a 1.8 ± 0.1 R ⊕ planet on a 0.85 day orbit that was detected with photometry from the TESS mission. We measured radial velocities of the TOI-1347 system using Keck/HIRES and HARPS-N and found the USP to be unusually massive at 11.1 ± 1.2 M ⊕. The measured mass and radius of TOI-1347 b imply an Earth-like bulk composition. A thin H/He envelope (>0.01% by mass) can be ruled out at high confidence. The system is between 1 and 1.8 Gyr old; therefore, intensive photoevaporation should have concluded. We detected a tentative phase-curve variation (3σ) and a secondary eclipse (2σ) in TESS photometry, which, if confirmed, could indicate the presence of a high-mean-molecular-weight atmosphere. We recommend additional optical and infrared observations to confirm the presence of an atmosphere and investigate its composition.
File in questo prodotto:
File Dimensione Formato  
Rubenzahl_2024_AJ_167_153.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549744
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact