Numerosity is the set size of a group of items. Numerosity perception is a trait shared across numerous species. Numerosity-selective neural populations are thought to underlie numerosity perception. These neurons have been identified primarily using electrical recordings in animal models and blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) in humans. Here we use electrical intracranial recordings to investigate numerosity tuning in humans, focusing on high-frequency transient activations. These recordings combine a high spatial and temporal resolution and can bridge the gap between animal models and human recordings. In line with previous studies, we find numerositytuned responses at parietal sites in two out of three participants. Neuronal populations at these locations did not respond to other visual stimuli, i.e. faces, houses, and letters, in contrast to several occipital sites. Our findings further corroborate the specificity of numerosity tuning of in parietal cortex, and further link fMRI results and electrophysiological recordings.

Intracranial recordings show evidence of numerosity tuning in human parietal cortex

Fracasso A.;
2022

Abstract

Numerosity is the set size of a group of items. Numerosity perception is a trait shared across numerous species. Numerosity-selective neural populations are thought to underlie numerosity perception. These neurons have been identified primarily using electrical recordings in animal models and blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) in humans. Here we use electrical intracranial recordings to investigate numerosity tuning in humans, focusing on high-frequency transient activations. These recordings combine a high spatial and temporal resolution and can bridge the gap between animal models and human recordings. In line with previous studies, we find numerositytuned responses at parietal sites in two out of three participants. Neuronal populations at these locations did not respond to other visual stimuli, i.e. faces, houses, and letters, in contrast to several occipital sites. Our findings further corroborate the specificity of numerosity tuning of in parietal cortex, and further link fMRI results and electrophysiological recordings.
2022
File in questo prodotto:
File Dimensione Formato  
journal.pone.0272087.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact