Looking for a geometric framework to study plectic Heegner points, we define a collection of abelian varieties - called plectic Jacobians - using the middle-degree cohomology of quaternionic Shimura varieties (QSVs). The construction is inspired by the definition of Griffiths' intermediate Jacobians and rests on Nekovar-Scholl's notion of plectic Hodge structures. Moreover, we construct exotic Abel-Jacobi maps sending certain zero cycles on QSVs to plectic Jacobians.

PLECTIC JACOBIANS

Fornea M.
2024

Abstract

Looking for a geometric framework to study plectic Heegner points, we define a collection of abelian varieties - called plectic Jacobians - using the middle-degree cohomology of quaternionic Shimura varieties (QSVs). The construction is inspired by the definition of Griffiths' intermediate Jacobians and rests on Nekovar-Scholl's notion of plectic Hodge structures. Moreover, we construct exotic Abel-Jacobi maps sending certain zero cycles on QSVs to plectic Jacobians.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3550131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact