In 1873, W. K. Clifford introduced a notion of parallelism in the threedimensional elliptic space that, quite surprisingly, exhibits almost all properties of Euclidean parallelism in ordinary space. The purpose of this paper is to describe the genesis of this notion in Clifford’s works and to provide a historical analysis of its reception in the investigations of F. Klein, L. Bianchi, G. Fubini, and E. Bortolotti. Special emphasis is placed upon the important role that Clifford’s parallelism played in the development of the theory of connections.
Variations on a theme: Clifford’s parallelism in elliptic space
Cogliati, Alberto
2015
Abstract
In 1873, W. K. Clifford introduced a notion of parallelism in the threedimensional elliptic space that, quite surprisingly, exhibits almost all properties of Euclidean parallelism in ordinary space. The purpose of this paper is to describe the genesis of this notion in Clifford’s works and to provide a historical analysis of its reception in the investigations of F. Klein, L. Bianchi, G. Fubini, and E. Bortolotti. Special emphasis is placed upon the important role that Clifford’s parallelism played in the development of the theory of connections.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cliffordrevised23.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
351.17 kB
Formato
Adobe PDF
|
351.17 kB | Adobe PDF | Visualizza/Apri |
s00407-015-0154-z.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
582.88 kB
Formato
Adobe PDF
|
582.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.