Exponential polynomials are essential in subdivision for the reconstruction of specific families of curves and surfaces, such as conic sections and quadric surfaces. It is well known that if a linear subdivision scheme is able to reproduce a certain space of exponential polynomials, then it must be level-dependent, with rules depending on the frequencies (and eventual multiplicities) defining the considered space. This work discusses a general strategy that exploits annihilating operators to locally detect those frequencies directly from the given data and therefore to choose the correct subdivision rule to be applied. This is intended as a first step towards the construction of self-adapting subdivision schemes able to locally reproduce exponential polynomials belonging to different spaces. An application of the proposed strategy is shown explicitly on an example involving the classical butterfly interpolatory scheme. This particular example is the generalization of what has been done for the univariate case in Donat and López-Ureña (2019), which inspired this work.

An annihilator-based strategy for the automatic detection of exponential polynomial spaces in subdivision

Viscardi A.
2021

Abstract

Exponential polynomials are essential in subdivision for the reconstruction of specific families of curves and surfaces, such as conic sections and quadric surfaces. It is well known that if a linear subdivision scheme is able to reproduce a certain space of exponential polynomials, then it must be level-dependent, with rules depending on the frequencies (and eventual multiplicities) defining the considered space. This work discusses a general strategy that exploits annihilating operators to locally detect those frequencies directly from the given data and therefore to choose the correct subdivision rule to be applied. This is intended as a first step towards the construction of self-adapting subdivision schemes able to locally reproduce exponential polynomials belonging to different spaces. An application of the proposed strategy is shown explicitly on an example involving the classical butterfly interpolatory scheme. This particular example is the generalization of what has been done for the univariate case in Donat and López-Ureña (2019), which inspired this work.
File in questo prodotto:
File Dimensione Formato  
[2021] CAGD - An annihilator-based strategy for the automatic detection of exponential polynomial spaces in subdivision.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 625.04 kB
Formato Adobe PDF
625.04 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3550657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact