Analyzing, developing and exploiting results obtained by Laplace in 1785 on the Fourier series expansion of the function $(1-2\alpha \cos \theta+\alpha^2)^{-s}$, we obtain a family of new expansions and generating functions for Chebyshev polynomials. A relation between the generating functions of the Chebyshev polynomials $T_n$ and the Gegenbauer polynomials $C_n^{(2)}$ is given.

A Family of New Generating Functions for the Chebyshev Polynomials, Based on Works by Laplace, Lagrange and Euler

Redivo-Zaglia, Michela
Writing – Review & Editing
2024

Abstract

Analyzing, developing and exploiting results obtained by Laplace in 1785 on the Fourier series expansion of the function $(1-2\alpha \cos \theta+\alpha^2)^{-s}$, we obtain a family of new expansions and generating functions for Chebyshev polynomials. A relation between the generating functions of the Chebyshev polynomials $T_n$ and the Gegenbauer polynomials $C_n^{(2)}$ is given.
2024
File in questo prodotto:
File Dimensione Formato  
mathematics-12-00751-v2-1.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 242.3 kB
Formato Adobe PDF
242.3 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3551500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact