Forensic age estimation is crucial for identifying unknown individuals and narrowing suspect pools in criminal investigations. Over the past 15 years, significant progress has been made in using biochemical, genetic, and epigenetic markers to estimate chronological age. Methods: From research on PubMed a total of 155 studies, related to advancements in age prediction techniques, were selected following PRISMA guidelines. Studies considered eligible dealt with radiocarbon dating, aspartic acid racemization, mitochondrial DNA analysis, signal joint T-cell receptor excision circles, RNA analysis, telomeres, and DNA methylation in the last 15 years and were summarized in a table. Results: Despite these advancements, challenges persist, including variability in prediction accuracy, sample degradation, and the lack of standardization and reproducibility. DNA methylation emerged as the most promising approach capable of high accuracy across diverse populations and age ranges. Multimodal methods integrating several biomarkers show promise in improving reliability and addressing these limitations. Conclusion: While significant progress has been made, further standardization, validation, and technological integration are needed to enhance forensic age estimation. These efforts are essential for meeting the growing demands of forensic science while addressing ethical and legal considerations.

Advancing Forensic Human Chronological Age Estimation: Biochemical, Genetic, and Epigenetic Approaches from the Last 15 Years: A Systematic Review

Marcante, Beatrice;Delicati, Arianna;Tozzo, Pamela;Caenazzo, Luciana
2025

Abstract

Forensic age estimation is crucial for identifying unknown individuals and narrowing suspect pools in criminal investigations. Over the past 15 years, significant progress has been made in using biochemical, genetic, and epigenetic markers to estimate chronological age. Methods: From research on PubMed a total of 155 studies, related to advancements in age prediction techniques, were selected following PRISMA guidelines. Studies considered eligible dealt with radiocarbon dating, aspartic acid racemization, mitochondrial DNA analysis, signal joint T-cell receptor excision circles, RNA analysis, telomeres, and DNA methylation in the last 15 years and were summarized in a table. Results: Despite these advancements, challenges persist, including variability in prediction accuracy, sample degradation, and the lack of standardization and reproducibility. DNA methylation emerged as the most promising approach capable of high accuracy across diverse populations and age ranges. Multimodal methods integrating several biomarkers show promise in improving reliability and addressing these limitations. Conclusion: While significant progress has been made, further standardization, validation, and technological integration are needed to enhance forensic age estimation. These efforts are essential for meeting the growing demands of forensic science while addressing ethical and legal considerations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3552143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact