We present an approach to studying optimal control problems in the space of nonnegative measures,with dynamics given by a nonlocal balance law.This approach relies on transforming the balance law into a continuity equationin the space of probabilities, and subsequently into an ODE in a Hilbert space.The main result is a version of Pontryagin’s maximum principle for the addressed problem.

Optimal Control of Nonlocal Balance Equations in the Space of Nonnegative Measures

Pogodaev N. I.;
2025

Abstract

We present an approach to studying optimal control problems in the space of nonnegative measures,with dynamics given by a nonlocal balance law.This approach relies on transforming the balance law into a continuity equationin the space of probabilities, and subsequently into an ODE in a Hilbert space.The main result is a version of Pontryagin’s maximum principle for the addressed problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3554859
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact