Chlorophyll, the green pigment essential for photosynthesis, abundantly found in green vegetables and algae, has attracted growing scientific interest for its potential therapeutic effects, particularly in diabetes management. Recent research highlighted that chlorophyll and its derivatives may beneficially influence glucose metabolism and oxidative stress, key factors in diabetes. This review examines current knowledge on how chlorophyll compounds could aid diabetes control. Chlorophyll and its derivatives appear to support glucose regulation primarily through actions in the gastrointestinal tract. They modulate gut microbiota, improve glucose tolerance, reduce inflammation, and alleviate obesity-related markers. While chlorophyll itself does not directly inhibit digestive enzymes like α-glucosidase, its derivatives such as pheophorbide a, pheophytin a, and pyropheophytin a may slow carbohydrate digestion, acting as α-amylase and α-glucosidase inhibitors, reducing postprandial glucose spikes. Additionally, chlorophyll enhances resistant starch content, further controlling glucose absorption. Beyond digestion, chlorophyll derivatives show promise in inhibiting glycation processes, improving insulin sensitivity through nuclear receptor modulation, and lowering oxidative stress. However, some compounds pose risks due to photosensitizing effects and toxicity, warranting careful consideration. Chlorophyllin, a stable semi-synthetic derivative, also shows potential in improving glucose and lipid metabolism. Notably, pheophorbide a demonstrates insulin-mimetic activity by stimulating glucose uptake via glucose transporters, offering a novel therapeutic avenue. Overall, the antioxidant, anti-inflammatory, and insulin-mimicking properties of chlorophyll derivatives suggest a multifaceted approach to diabetes management. While promising, these findings require further clinical validation to establish effective therapeutic applications.
Beyond Green: The Therapeutic Potential of Chlorophyll and Its Derivatives in Diabetes Control
Sartore, Giovanni;Ragazzi, Eugenio
2025
Abstract
Chlorophyll, the green pigment essential for photosynthesis, abundantly found in green vegetables and algae, has attracted growing scientific interest for its potential therapeutic effects, particularly in diabetes management. Recent research highlighted that chlorophyll and its derivatives may beneficially influence glucose metabolism and oxidative stress, key factors in diabetes. This review examines current knowledge on how chlorophyll compounds could aid diabetes control. Chlorophyll and its derivatives appear to support glucose regulation primarily through actions in the gastrointestinal tract. They modulate gut microbiota, improve glucose tolerance, reduce inflammation, and alleviate obesity-related markers. While chlorophyll itself does not directly inhibit digestive enzymes like α-glucosidase, its derivatives such as pheophorbide a, pheophytin a, and pyropheophytin a may slow carbohydrate digestion, acting as α-amylase and α-glucosidase inhibitors, reducing postprandial glucose spikes. Additionally, chlorophyll enhances resistant starch content, further controlling glucose absorption. Beyond digestion, chlorophyll derivatives show promise in inhibiting glycation processes, improving insulin sensitivity through nuclear receptor modulation, and lowering oxidative stress. However, some compounds pose risks due to photosensitizing effects and toxicity, warranting careful consideration. Chlorophyllin, a stable semi-synthetic derivative, also shows potential in improving glucose and lipid metabolism. Notably, pheophorbide a demonstrates insulin-mimetic activity by stimulating glucose uptake via glucose transporters, offering a novel therapeutic avenue. Overall, the antioxidant, anti-inflammatory, and insulin-mimicking properties of chlorophyll derivatives suggest a multifaceted approach to diabetes management. While promising, these findings require further clinical validation to establish effective therapeutic applications.File | Dimensione | Formato | |
---|---|---|---|
nutrients-17-02653-v2.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.