Mitochondrial Ca2+ plays a positive role in regulating pyruvate dehydrogenase, as well as the TCA cycle enzymes isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. This regulation boosts the production of reducing equivalents that fuel the electron transport chain, ultimately driving ATP production. The Mitochondrial Calcium Uniporter (MCU) is the highly selective channel responsible for mitochondrial Ca2+ uptake when local Ca2+ levels reach the threshold for channel activation. In a recent study, LaMoia et al. used an innovative [13C5]glutamine-based metabolic flux analysis method (Q-flux) to measure in vivo hepatic metabolic fluxes in liver-specific MCU-/- mice. Surprisingly, they observed increased flux through isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Metabolic pathways are continuously reorganized in response to intrinsic cellular signals, as well as hormonal and nutritional inputs. Integrating metabolic flux analysis into complex systems can provide deeper insights into how metabolic adaptations occur under different conditions.

The intricacies of mitochondrial calcium and enzyme regulation in liver metabolism

Mammucari, Cristina
2024

Abstract

Mitochondrial Ca2+ plays a positive role in regulating pyruvate dehydrogenase, as well as the TCA cycle enzymes isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. This regulation boosts the production of reducing equivalents that fuel the electron transport chain, ultimately driving ATP production. The Mitochondrial Calcium Uniporter (MCU) is the highly selective channel responsible for mitochondrial Ca2+ uptake when local Ca2+ levels reach the threshold for channel activation. In a recent study, LaMoia et al. used an innovative [13C5]glutamine-based metabolic flux analysis method (Q-flux) to measure in vivo hepatic metabolic fluxes in liver-specific MCU-/- mice. Surprisingly, they observed increased flux through isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Metabolic pathways are continuously reorganized in response to intrinsic cellular signals, as well as hormonal and nutritional inputs. Integrating metabolic flux analysis into complex systems can provide deeper insights into how metabolic adaptations occur under different conditions.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3561340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact