Ultralight dark matter is a compelling dark matter candidate. In this work, we examine the impact of quadratically-coupled ultralight dark matter on the predictions of Big Bang Nucleosynthesis. The presence of ultralight dark matter can modify the effective values of fundamental constants during Big Bang Nucleosynthesis, modifying the predicted abundances of the primordial elements such as Helium-4. We improve upon the existing literature in two ways: firstly, we take into account the thermal mass acquired by the ultralight dark matter due to its quadratic interactions with the Standard Model bath, which affects the cosmological evolution of the dark matter. Secondly, we treat the weak freeze-out using the full kinetic equations instead of using an instantaneous approximation. Both improvements were shown to impact the Helium-4 prediction in the context of universally-coupled dark matter in previous work. We extend these lessons to more general couplings. We show that with these modifications, Big Bang Nucleosynthesis provides strong constraints of ultralight dark matter with quadratic couplings to the Standard Model for a large range of masses as compared to other probes of this model, such as equivalence principle tests, atomic and nuclear clocks, as well as astrophysical and other cosmological probes.

Constraints on ultralight scalar dark matter with quadratic couplings

Philip Sørensen;
2023

Abstract

Ultralight dark matter is a compelling dark matter candidate. In this work, we examine the impact of quadratically-coupled ultralight dark matter on the predictions of Big Bang Nucleosynthesis. The presence of ultralight dark matter can modify the effective values of fundamental constants during Big Bang Nucleosynthesis, modifying the predicted abundances of the primordial elements such as Helium-4. We improve upon the existing literature in two ways: firstly, we take into account the thermal mass acquired by the ultralight dark matter due to its quadratic interactions with the Standard Model bath, which affects the cosmological evolution of the dark matter. Secondly, we treat the weak freeze-out using the full kinetic equations instead of using an instantaneous approximation. Both improvements were shown to impact the Helium-4 prediction in the context of universally-coupled dark matter in previous work. We extend these lessons to more general couplings. We show that with these modifications, Big Bang Nucleosynthesis provides strong constraints of ultralight dark matter with quadratic couplings to the Standard Model for a large range of masses as compared to other probes of this model, such as equivalence principle tests, atomic and nuclear clocks, as well as astrophysical and other cosmological probes.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-5527426.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3564352
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact