The study of non-supersymmetric string theories is shedding light on an important corner of the string landscape and might ultimately explain why, so far, we did not observe supersymmetry in our universe. We review how misaligned supersymmetry in closed-string theories leads to a cancellation between bosons and fermions even in non-supersymmetric string theories. We then show that the same cancellation takes place for open strings by studying an anti-Dp-brane placed on top of an Op-plane in type II string theory. Misaligned supersymmetry consists in cancellations between bosons and fermions at different energy levels, in such a way that the averaged number of states grows at a rate dominated by a factor eCeffn, with Ceff< Ctot, where Ctot is the inverse Hagedorn temperature. We prove the previously conjectured complete cancellation, i.e. we prove that Ceff = 0, for a vast class of models.
Misaligned supersymmetry and open strings
Cribiori N.;Tonioni F.;
2021
Abstract
The study of non-supersymmetric string theories is shedding light on an important corner of the string landscape and might ultimately explain why, so far, we did not observe supersymmetry in our universe. We review how misaligned supersymmetry in closed-string theories leads to a cancellation between bosons and fermions even in non-supersymmetric string theories. We then show that the same cancellation takes place for open strings by studying an anti-Dp-brane placed on top of an Op-plane in type II string theory. Misaligned supersymmetry consists in cancellations between bosons and fermions at different energy levels, in such a way that the averaged number of states grows at a rate dominated by a factor eCeffn, with Ceff< Ctot, where Ctot is the inverse Hagedorn temperature. We prove the previously conjectured complete cancellation, i.e. we prove that Ceff = 0, for a vast class of models.| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream-1315539985.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
730.39 kB
Formato
Adobe PDF
|
730.39 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




