This paper is devoted to the study of Mean-field Games (MFG) systems in the mass-critical exponent case. We first derive the optimal Gagliardo-Nirenberg type inequality associated with the potential-free MFG system. Then, under some mild assumptions on the potential function, we show that there exists a critical mass M such that the MFG system admits a least-energy solution if and only if the total mass of population density M satisfies M

Critical mass phenomena and blow-up behaviors of ground states in stationary second order mean-field games systems with decreasing cost

Cirant M.;
2025

Abstract

This paper is devoted to the study of Mean-field Games (MFG) systems in the mass-critical exponent case. We first derive the optimal Gagliardo-Nirenberg type inequality associated with the potential-free MFG system. Then, under some mild assumptions on the potential function, we show that there exists a critical mass M such that the MFG system admits a least-energy solution if and only if the total mass of population density M satisfies M
File in questo prodotto:
File Dimensione Formato  
MFG_JMPA.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 440.58 kB
Formato Adobe PDF
440.58 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3565680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact