In the absence of explicit neuronal inputs, the glial cell astrocytes exhibit recurring intracellular Ca2+ fluctuations, primarily localized at thin processes, known as Ca2+ microdomains (MDs). Although spontaneous Ca2+ MDs are present throughout the brain, their putative role is unknown. Here, we question whether, owing to their recurring signaling mode, spontaneous Ca2+ MDs contribute to slowly evolving phenomena in the brain, such as memory consolidation. We demonstrate that, in the perirhinal cortex, a central region in recognition memory, these events promote Ca2+-dependent gliotransmission and modulate synaptic strengthening. Their recurring activity extends the release of the gliotransmitter brain-derived neurotrophic factor (BDNF) over time, ensuring the sustained Tropomyosin Receptor Kinase B (TrkB)-signaling required for the consolidation of long-term synaptic potentiation and lasting memories. We also show that Ca2+ MDs, which are stochastic events, preserve their random behavior during gliotransmission, introducing an element of unpredictability into the process of memory retention. Our study assigns to spontaneous, stochastic activity in astrocytes a unique functional role in shaping and stabilizing memory circuits.

Spontaneous activity of astrocytes is a stochastic functional signal for memory consolidation

Lia, Annamaria;Zonta, Micaela;Chiavegato, Angela;
2025

Abstract

In the absence of explicit neuronal inputs, the glial cell astrocytes exhibit recurring intracellular Ca2+ fluctuations, primarily localized at thin processes, known as Ca2+ microdomains (MDs). Although spontaneous Ca2+ MDs are present throughout the brain, their putative role is unknown. Here, we question whether, owing to their recurring signaling mode, spontaneous Ca2+ MDs contribute to slowly evolving phenomena in the brain, such as memory consolidation. We demonstrate that, in the perirhinal cortex, a central region in recognition memory, these events promote Ca2+-dependent gliotransmission and modulate synaptic strengthening. Their recurring activity extends the release of the gliotransmitter brain-derived neurotrophic factor (BDNF) over time, ensuring the sustained Tropomyosin Receptor Kinase B (TrkB)-signaling required for the consolidation of long-term synaptic potentiation and lasting memories. We also show that Ca2+ MDs, which are stochastic events, preserve their random behavior during gliotransmission, introducing an element of unpredictability into the process of memory retention. Our study assigns to spontaneous, stochastic activity in astrocytes a unique functional role in shaping and stabilizing memory circuits.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3565703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact