In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and γ rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher γ-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of γ rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same γ-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.

Neutron detection and γ-ray suppression using artificial neural networks with the liquid scintillators BC-501A and BC-537

Carturan S.;Goasduff A.;Testov D.;Triossi A.;
2019

Abstract

In this work we present a comparison between the two liquid scintillators BC-501A and BC-537 in terms of their performance regarding the pulse-shape discrimination between neutrons and γ rays. Special emphasis is put on the application of artificial neural networks. The results show a systematically higher γ-ray rejection ratio for BC-501A compared to BC-537 applying the commonly used charge comparison method. Using the artificial neural network approach the discrimination quality was improved to more than 95% rejection efficiency of γ rays over the energy range 150 to 1000 keV for both BC-501A and BC-537. However, due to the larger light output of BC-501A compared to BC-537, neutrons could be identified in BC-501A using artificial neural networks down to a recoil proton energy of 800 keV compared to a recoil deuteron energy of 1200 keV for BC-537. We conclude that using artificial neural networks it is possible to obtain the same γ-ray rejection quality from both BC-501A and BC-537 for neutrons above a low-energy threshold. This threshold is, however, lower for BC-501A, which is important for nuclear structure spectroscopy experiments of rare reaction channels where low-energy interactions dominates.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3566405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact