Pulsar timing arrays (PTAs) have reported evidence for a stochastic gravitational wave (GW) background at nanohertz frequencies, possibly originating in the early Universe. We show that the spectral shape of the low-frequency (causality) tail of GW signals sourced at temperatures around T≳1 GeV is distinctively affected by confinement of strong interactions (QCD), due to the corresponding sharp decrease in the number of relativistic species, and significantly deviates from ∼f3 commonly adopted in the literature. Bayesian analyses in the NANOGrav 15 years and the previous international PTA datasets reveal a significant improvement in the fit with respect to cubic power-law spectra, previously employed for the causality tail. While no conclusion on the nature of the signal can be drawn at the moment, our results show that the inclusion of standard model effects on cosmological GWs can have a decisive impact on model selection.

Footprints of the QCD crossover on cosmological gravitational waves at pulsar timing arrays

Franciolini G.;Racco D.;
2024

Abstract

Pulsar timing arrays (PTAs) have reported evidence for a stochastic gravitational wave (GW) background at nanohertz frequencies, possibly originating in the early Universe. We show that the spectral shape of the low-frequency (causality) tail of GW signals sourced at temperatures around T≳1 GeV is distinctively affected by confinement of strong interactions (QCD), due to the corresponding sharp decrease in the number of relativistic species, and significantly deviates from ∼f3 commonly adopted in the literature. Bayesian analyses in the NANOGrav 15 years and the previous international PTA datasets reveal a significant improvement in the fit with respect to cubic power-law spectra, previously employed for the causality tail. While no conclusion on the nature of the signal can be drawn at the moment, our results show that the inclusion of standard model effects on cosmological GWs can have a decisive impact on model selection.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3570150
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 51
  • OpenAlex ND
social impact