Spatial transcriptomics measures the expression of thousands of genes in a tissue sample while preserving its spatial structure. This class of technologies has enabled the investigation of the spatial variation of gene expressions and their impact on specific biological processes. Identifying genes with similar expression profiles is of utmost importance, thus motivating the development of flexible methods leveraging spatial data structure to cluster genes. Here, we propose a modeling framework for clustering observations measured over numerous spatial locations via Gaussian processes. Rather than specifying their covariance kernels as a function of the spatial structure, we use it to inform a generalized Cholesky decomposition of their precision matrices. This approach prevents issues with kernel misspecification and facilitates the estimation of a non-stationarity spatial covariance structure. Applied to spatial transcriptomic data, our model identifies gene clusters with distinctive spatial correlation patterns across tissue areas comprising different cell types, like tumoral and stromal areas.

Spatially Regularized Gaussian Mixtures for Clustering Spatial Transcriptomic Data

Sottosanti, Andrea;Risso, Davide;Denti, Francesco
2025

Abstract

Spatial transcriptomics measures the expression of thousands of genes in a tissue sample while preserving its spatial structure. This class of technologies has enabled the investigation of the spatial variation of gene expressions and their impact on specific biological processes. Identifying genes with similar expression profiles is of utmost importance, thus motivating the development of flexible methods leveraging spatial data structure to cluster genes. Here, we propose a modeling framework for clustering observations measured over numerous spatial locations via Gaussian processes. Rather than specifying their covariance kernels as a function of the spatial structure, we use it to inform a generalized Cholesky decomposition of their precision matrices. This approach prevents issues with kernel misspecification and facilitates the estimation of a non-stationarity spatial covariance structure. Applied to spatial transcriptomic data, our model identifies gene clusters with distinctive spatial correlation patterns across tissue areas comprising different cell types, like tumoral and stromal areas.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1294708173.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3570418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact