The dynamics of a 2D positive system depends on the pair of nonnegative square matrices that provide the updating of its local states. In this paper, several spectral properties, such as finite memory, separability, and property L, which depend on the characteristic polynomial of the pair, are investigated under the nonnegativity constraint and in connection with the combinatorial structure of the matrices. Some aspects of the Perron-Frobenius theory are extended to the 2D case; in particular, conditions are provided guaranteeing the existence of a common maximal eigenvector for two nonnegative matrices with irreducible sum. Finally, some results on 2D positive realizations are presented.

On the spectral and combinatorial structure of of 2D positive systems

FORNASINI, ETTORE;VALCHER, MARIA ELENA
1996

Abstract

The dynamics of a 2D positive system depends on the pair of nonnegative square matrices that provide the updating of its local states. In this paper, several spectral properties, such as finite memory, separability, and property L, which depend on the characteristic polynomial of the pair, are investigated under the nonnegativity constraint and in connection with the combinatorial structure of the matrices. Some aspects of the Perron-Frobenius theory are extended to the 2D case; in particular, conditions are provided guaranteeing the existence of a common maximal eigenvector for two nonnegative matrices with irreducible sum. Finally, some results on 2D positive realizations are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/104250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact