We study the L2-gradient flow of the nonconvex functional F phi(u) := 1/2 integral((0,1)) phi(u(x)) dx, where phi(xi) := min(xi(2), 1). We show the existence of a global in time possibly discontinuous solution u starting from a mixed-type initial datum u(0), i. e., when u(0) is a piecewise smooth function having derivative taking values both in the region where phi'' > 0 and where phi'' = 0. We show that, in general, the region where the derivative of u takes values where phi'' = 0 progressively disappears while the region where phi'' is positive grows. We show this behavior with some numerical experiments.

Global solutions to the gradient flow equation of a nonconvex functional

NOVAGA, MATTEO;
2006

Abstract

We study the L2-gradient flow of the nonconvex functional F phi(u) := 1/2 integral((0,1)) phi(u(x)) dx, where phi(xi) := min(xi(2), 1). We show the existence of a global in time possibly discontinuous solution u starting from a mixed-type initial datum u(0), i. e., when u(0) is a piecewise smooth function having derivative taking values both in the region where phi'' > 0 and where phi'' = 0. We show that, in general, the region where the derivative of u takes values where phi'' = 0 progressively disappears while the region where phi'' is positive grows. We show this behavior with some numerical experiments.
File in questo prodotto:
File Dimensione Formato  
BNP06.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 338.28 kB
Formato Adobe PDF
338.28 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/116467
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 19
  • OpenAlex ND
social impact