Due to the large availability of agro-industry wastes containing potentially exploitable substrates, such as whey from dairy industry, a study on the bacterial conversion of lactose and whey permeate to poly(β-hydroxyalkanoate) (PHA) was undertaken. A first approach was carried out on culture collection strains. Among a number of strains tested, Hydrogenophaga pseudoflava DSM 1034 and Sinorhizobium meliloti 41 were found to grow on lactose and produce PHA. These findings suggested to investigate among a wider range of microorganisms by directly isolating new strains from soil. A number of soil bacteria were first isolated on a minimal medium containing lactose as unique carbon source and PHA-accumulating traits were then investigated. Three isolates, identified by 16S rDNA sequence analysis as Sinorhizobium sp., Bacillus megaterium and Bacillus sp., were selected for their efficient growth and PHA production using lactose as carbon source. The same strains were also tested for their ability to accumulate PHA by direct fermentation of whey and whey permeate. Our results suggest that production of the polymer from cheese whey or whey permeate may be possible, although further research is needed to determine whether these microorganisms have the potential for commercial production of such biodegradable polymers.
Bacterial production of PHA from lactose and cheese whey permeate
POVOLO, SILVANA;CASELLA, SERGIO
2003
Abstract
Due to the large availability of agro-industry wastes containing potentially exploitable substrates, such as whey from dairy industry, a study on the bacterial conversion of lactose and whey permeate to poly(β-hydroxyalkanoate) (PHA) was undertaken. A first approach was carried out on culture collection strains. Among a number of strains tested, Hydrogenophaga pseudoflava DSM 1034 and Sinorhizobium meliloti 41 were found to grow on lactose and produce PHA. These findings suggested to investigate among a wider range of microorganisms by directly isolating new strains from soil. A number of soil bacteria were first isolated on a minimal medium containing lactose as unique carbon source and PHA-accumulating traits were then investigated. Three isolates, identified by 16S rDNA sequence analysis as Sinorhizobium sp., Bacillus megaterium and Bacillus sp., were selected for their efficient growth and PHA production using lactose as carbon source. The same strains were also tested for their ability to accumulate PHA by direct fermentation of whey and whey permeate. Our results suggest that production of the polymer from cheese whey or whey permeate may be possible, although further research is needed to determine whether these microorganisms have the potential for commercial production of such biodegradable polymers.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.