Monte Carlo localisation generally requires a metrical map of the environment to calculate a robots position from the posterior probability density of a set of weighted samples. Image-based localisation, which matches a robots current view of the environment with reference views, fails in environments with perceptual aliasing. The method we present in this paper is experimentally demonstrated to overcome these disadvantages in a large indoor environment by combining Monte Carlo and image-based localisation. It exploits the properties of the Fourier transform of omnidirectional images, while weighting the samples according to the similarity among images. We also introduce a novel strategy for solving the kidnapped robot problem.

Image-based Monte Carlo localisation with omnidirectional images

MENEGATTI, EMANUELE;PAGELLO, ENRICO;
2004

Abstract

Monte Carlo localisation generally requires a metrical map of the environment to calculate a robots position from the posterior probability density of a set of weighted samples. Image-based localisation, which matches a robots current view of the environment with reference views, fails in environments with perceptual aliasing. The method we present in this paper is experimentally demonstrated to overcome these disadvantages in a large indoor environment by combining Monte Carlo and image-based localisation. It exploits the properties of the Fourier transform of omnidirectional images, while weighting the samples according to the similarity among images. We also introduce a novel strategy for solving the kidnapped robot problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1353998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 78
social impact