Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins1, 2. They are characterized by a rapid change of crystal structure, accompanied by the development of a rich microstructure. Martensitic transformations can be irreversible, as seen in steels upon quenching1, or they can be reversible, such as those observed in shape-memory alloys3, 4. In the latter case, the microstructures formed on cooling are easily manipulated by loads and disappear upon reheating. Here, using mathematical theory and numerical simulation, we explain these sharp differences in behaviour on the basis of the change in crystal symmetry during the transition. We find that a necessary condition for reversibility is that the symmetry groups of the parent and product phases be included in a common finite symmetry group. In these cases, the energy barrier to lattice-invariant shear is generically higher than that pertaining to the phase change and, consequently, transformations of this type can occur with virtually no plasticity. Irreversibility is inevitable in all other martensitic transformations, where the energy barrier to plastic deformation (via lattice-invariant shears, as in twinning or slip) is no higher than the barrier to the phase change itself. Various experimental observations confirm the importance of the symmetry of the stable states in determining the macroscopic reversibility of martensitic transformations.

Crystal symmetry and the reversibility of martensitic transformations

ZANZOTTO, GIOVANNI;
2004

Abstract

Martensitic transformations are diffusionless, solid-to-solid phase transitions, and have been observed in metals, alloys, ceramics and proteins1, 2. They are characterized by a rapid change of crystal structure, accompanied by the development of a rich microstructure. Martensitic transformations can be irreversible, as seen in steels upon quenching1, or they can be reversible, such as those observed in shape-memory alloys3, 4. In the latter case, the microstructures formed on cooling are easily manipulated by loads and disappear upon reheating. Here, using mathematical theory and numerical simulation, we explain these sharp differences in behaviour on the basis of the change in crystal symmetry during the transition. We find that a necessary condition for reversibility is that the symmetry groups of the parent and product phases be included in a common finite symmetry group. In these cases, the energy barrier to lattice-invariant shear is generically higher than that pertaining to the phase change and, consequently, transformations of this type can occur with virtually no plasticity. Irreversibility is inevitable in all other martensitic transformations, where the energy barrier to plastic deformation (via lattice-invariant shears, as in twinning or slip) is no higher than the barrier to the phase change itself. Various experimental observations confirm the importance of the symmetry of the stable states in determining the macroscopic reversibility of martensitic transformations.
2004
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1376611
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 298
  • ???jsp.display-item.citation.isi??? 282
social impact