We prove that, in general, H-regular surfaces in the Heisenberg group H^1 are not bi-Lipschitz equivalent to the plane R^2 endowed with the “parabolic” distance, which instead is the model space for C^1 surfaces without characteristic points. In Heisenberg groups H^n, H-regular surfaces can be seen as intrinsic graphs: we show that such parametrizations do not belong to Sobolev classes of metric-space valued maps.

Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group

VITTONE, DAVIDE
2010

Abstract

We prove that, in general, H-regular surfaces in the Heisenberg group H^1 are not bi-Lipschitz equivalent to the plane R^2 endowed with the “parabolic” distance, which instead is the model space for C^1 surfaces without characteristic points. In Heisenberg groups H^n, H-regular surfaces can be seen as intrinsic graphs: we show that such parametrizations do not belong to Sobolev classes of metric-space valued maps.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2428587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact