The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.

FERMI LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE

BASTIERI, DENIS;BUSON, SARA;RANDO, RICCARDO;TIBALDO, LUIGI;
2010

Abstract

The extragalactic background light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the γ-ray flux of extragalactic sources such as blazars and gamma-ray bursts (GRBs). The Large Area Telescope on board Fermi detects a sample of γ-ray blazars with redshift up to z ~ 3, and GRBs with redshift up to z ~ 4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of γ-ray flux attenuation by the EBL. We place upper limits on the γ-ray opacity of the universe at various energies and redshifts and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. can be ruled out with high confidence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2434583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 117
social impact