Thin films composed of Au nanoparticles dispersed inside a TiO2-NiO mixed oxide matrix are prepared by the sol-gel method, resulting in nanostructured composites with a morphology and crystallinity that depend on synthesis parameters and thermal treatment. Their functional activity as hydrogen sulfide optical sensors is due to Au-localized surface plasmon resonance (SPR) which is reversible. The detection sensitivity is shown to be down to a few parts per million ofH2S, and almost no interference in response is observed during simultaneous exposure to CO or H2, resulting in a highly sensitive and selective sensor for hydrogen sulfide detection. For mechanistic studies, experimental evidence using reaction product analysis and thin film surface characterization suggests a direct catalytic oxidation of H2S over the Au-TiO2-NiO nanocomposite film.

Au Nanoparticles in Nanocrystalline TiO2-NiO Films for SPR-Based, Selective H2S Gas Sensing

DELLA GASPERA, ENRICO;GUGLIELMI, MASSIMO;AGNOLI, STEFANO;GRANOZZI, GAETANO;BELLO, VALENTINA;MATTEI, GIOVANNI;MARTUCCI, ALESSANDRO
2010

Abstract

Thin films composed of Au nanoparticles dispersed inside a TiO2-NiO mixed oxide matrix are prepared by the sol-gel method, resulting in nanostructured composites with a morphology and crystallinity that depend on synthesis parameters and thermal treatment. Their functional activity as hydrogen sulfide optical sensors is due to Au-localized surface plasmon resonance (SPR) which is reversible. The detection sensitivity is shown to be down to a few parts per million ofH2S, and almost no interference in response is observed during simultaneous exposure to CO or H2, resulting in a highly sensitive and selective sensor for hydrogen sulfide detection. For mechanistic studies, experimental evidence using reaction product analysis and thin film surface characterization suggests a direct catalytic oxidation of H2S over the Au-TiO2-NiO nanocomposite film.
2010
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2438922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 89
  • OpenAlex ND
social impact