Colonies of the compound ascidian Botryllus schlosseri undergo recurrent generation changes during which massive, natural apoptosis occurs in zooid tissues: for this reason the species is emerging as an interesting model of invertebrate chordate, phylogenetically related to vertebrates, for studies of apoptosis during development. In the present work, we carried out a series of morphological, cytofluorimetrical and biochemical analyses, useful for a better characterization of Botryllus apoptosis. Results are consistent with the following viewpoints: (i) both intrinsic and extrinsic pathways, probably connected by the BH3-only protein Bid, are involved in cell death induction; (ii) phagocytes, once loaded with senescent cells, frequently undergo apoptosis, probably as a consequence of oxidative stress caused by prolonged respiratory burst, and (iii) senescent phagocytes are easily recognized and ingested by other phagocytes, responsible for their clearance. In addition, results suggest the conservation of apoptosis induction mechanisms throughout chordate evolution.

Hovering between death and life: Natural apoptosis and phagocytes in the blastogenetic cycle of the colonial ascidian Botryllus schlosseri

CIMA, FRANCESCA;MANNI, LUCIA;BASSO, GIUSEPPE;ACCORDI, BENEDETTA;SCHIAVON, FILIPPO;BALLARIN, LORIANO
2010

Abstract

Colonies of the compound ascidian Botryllus schlosseri undergo recurrent generation changes during which massive, natural apoptosis occurs in zooid tissues: for this reason the species is emerging as an interesting model of invertebrate chordate, phylogenetically related to vertebrates, for studies of apoptosis during development. In the present work, we carried out a series of morphological, cytofluorimetrical and biochemical analyses, useful for a better characterization of Botryllus apoptosis. Results are consistent with the following viewpoints: (i) both intrinsic and extrinsic pathways, probably connected by the BH3-only protein Bid, are involved in cell death induction; (ii) phagocytes, once loaded with senescent cells, frequently undergo apoptosis, probably as a consequence of oxidative stress caused by prolonged respiratory burst, and (iii) senescent phagocytes are easily recognized and ingested by other phagocytes, responsible for their clearance. In addition, results suggest the conservation of apoptosis induction mechanisms throughout chordate evolution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2439321
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact