Fire loading of concrete tunnel linings is characterized by various physical, chemical, and mechanical processes, resulting in spalling of near-surface concrete layers and degradation of strength and stiffness of the remaining tunnel lining. In this paper, the governing transport processes taking place in concrete at elevated temperatures are considered within a recently published fire-safety assessment tool [Savov K, Lackner R, Mang HA. Stability assessment of shallow tunnels subjected to fire load. Fire Safety J 2005; 40: 745-763] for underground structures. In contrast to consideration of heat transport only [Savov et al.], a coupled thermo-hydro-chemical analysis, simulating the heat and mass transport in concrete under fire loading, is performed, giving access to more realistic temperature distributions as well as gas-pressure distributions within the tunnel lining. These data serve as input for the structural safety assessment tool considering, in addition to the temperature dependence of mechanical properties, the effect of the gas pressure on the strength properties of the heated lining concrete. The combination of the two analysis tools (coupled analysis of governing transport processes and structural safety assessment) is illustrated by the fire-safety assessment of a cross-section of the Lainzer tunnel (Austria) characterized by low overburden (shallow tunnel).

Thermo-hydro-chemical couplings considered in safety assessment of shallow tunnels subjected to fire load

PESAVENTO, FRANCESCO;
2008

Abstract

Fire loading of concrete tunnel linings is characterized by various physical, chemical, and mechanical processes, resulting in spalling of near-surface concrete layers and degradation of strength and stiffness of the remaining tunnel lining. In this paper, the governing transport processes taking place in concrete at elevated temperatures are considered within a recently published fire-safety assessment tool [Savov K, Lackner R, Mang HA. Stability assessment of shallow tunnels subjected to fire load. Fire Safety J 2005; 40: 745-763] for underground structures. In contrast to consideration of heat transport only [Savov et al.], a coupled thermo-hydro-chemical analysis, simulating the heat and mass transport in concrete under fire loading, is performed, giving access to more realistic temperature distributions as well as gas-pressure distributions within the tunnel lining. These data serve as input for the structural safety assessment tool considering, in addition to the temperature dependence of mechanical properties, the effect of the gas pressure on the strength properties of the heated lining concrete. The combination of the two analysis tools (coupled analysis of governing transport processes and structural safety assessment) is illustrated by the fire-safety assessment of a cross-section of the Lainzer tunnel (Austria) characterized by low overburden (shallow tunnel).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2447138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact