Rodents perform object localization, texture and shape discrimination very precisely through whisking. During whisking, microcircuits in corresponding barrel columns get activated to segregate and integrate tactile information through the information processing pathway. Sensory signals are projected through the brainstem and thalamus to the corresponding 'barrel columns' where different cortical layers are activated during signal projection. Therefore, having precise information about the layer activation order is desirable to better understand this signal processing pathway. This work proposes an automated, computationally efficient and easy to implement method to determine the cortical layer activation from intracortically recorded local field potentials (LFPs) and derived current source density (CSD) profiles: 1. Barrel cortex LFPs are represented by a template of four subsequent events: small positive/negative (E1) → large negative (E2) → slow positive (E3)→ slow long negative (E4). The method exploits the layer specific characteristics of LFPs to obtain latencies of the individual events (E1–E4), then taking the latency of E2 for calculating the layer activation order. 2. The corresponding CSD profile is calculated from the LFPs and the first sink’s peak is considered as a reference point to calculate latencies and evaluate the layer activation order. Other reference points require manual calculation. Similar results of layer activation sequence are found using LFPs and CSDs. Extensive tests on LFPs recorded using standard borosilicate micropipettes demonstrated the method's workability. An interpretation of layer activation order and CSD profiles on the basis of a simplified interacortical barrel column architecture is also provided.

An automated method for detection of layer activation order in information processing pathway of rat barrel cortex under mechanical whisker stimulation

MAHMUD, MUFTI;PASQUALOTTO, ELISABETTA;BERTOLDO, ALESSANDRA;GIRARDI, STEFANO;MASCHIETTO, MARTA;VASSANELLI, STEFANO
2011

Abstract

Rodents perform object localization, texture and shape discrimination very precisely through whisking. During whisking, microcircuits in corresponding barrel columns get activated to segregate and integrate tactile information through the information processing pathway. Sensory signals are projected through the brainstem and thalamus to the corresponding 'barrel columns' where different cortical layers are activated during signal projection. Therefore, having precise information about the layer activation order is desirable to better understand this signal processing pathway. This work proposes an automated, computationally efficient and easy to implement method to determine the cortical layer activation from intracortically recorded local field potentials (LFPs) and derived current source density (CSD) profiles: 1. Barrel cortex LFPs are represented by a template of four subsequent events: small positive/negative (E1) → large negative (E2) → slow positive (E3)→ slow long negative (E4). The method exploits the layer specific characteristics of LFPs to obtain latencies of the individual events (E1–E4), then taking the latency of E2 for calculating the layer activation order. 2. The corresponding CSD profile is calculated from the LFPs and the first sink’s peak is considered as a reference point to calculate latencies and evaluate the layer activation order. Other reference points require manual calculation. Similar results of layer activation sequence are found using LFPs and CSDs. Extensive tests on LFPs recorded using standard borosilicate micropipettes demonstrated the method's workability. An interpretation of layer activation order and CSD profiles on the basis of a simplified interacortical barrel column architecture is also provided.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2459743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact