This paper is an answer to the need of finding the optimal solution for the throttling system in refrigerating machines using CO2 as working fluid; such a solution must combine reliability, low installation cost and high energy efficiency. To this purpose, different expansion systems are compared by means of a simulation programme, including a new one, operating with a differential valve, a liquid receiver and a thermostatic valve. The typical compression refrigerating cycle performed by CO2 involves transcritical operations and therefore the upper pressure needs to be adjusted to the optimal value, that, unlike the traditional cycle, is not determined by heat transfer. The innovative system here proposed shows an intrinsic self-adjusting capability that leads to COP values quite close to the maximum ones when a fixed suitable value of the differential pressure is chosen, even if the temperature of the secondary fluid varies to a large extent.

Optimisation of the throttling system in a CO2 refrigerating machine

CECCHINATO, LUCA;CORRADI, MARCO;FORNASIERI, EZIO;MINETTO, SILVIA;ZILIO, CLAUDIO
2003

Abstract

This paper is an answer to the need of finding the optimal solution for the throttling system in refrigerating machines using CO2 as working fluid; such a solution must combine reliability, low installation cost and high energy efficiency. To this purpose, different expansion systems are compared by means of a simulation programme, including a new one, operating with a differential valve, a liquid receiver and a thermostatic valve. The typical compression refrigerating cycle performed by CO2 involves transcritical operations and therefore the upper pressure needs to be adjusted to the optimal value, that, unlike the traditional cycle, is not determined by heat transfer. The innovative system here proposed shows an intrinsic self-adjusting capability that leads to COP values quite close to the maximum ones when a fixed suitable value of the differential pressure is chosen, even if the temperature of the secondary fluid varies to a large extent.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2460164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 30
social impact