The effects of anti-CD3 monoclonal antibodies on cytosolic free Ca2+ concentration, [Ca2+]i, were investigated in freshly isolated lymphocytes, T cell lines, T clones and the leukemic T cell line Jurkat with three different methodologies, i.e. classical cuvette experiments, cytofluorimetry and videoimaging. With any technique, concentrations of anti-CD3 antibodies optimal for stimulation of DNA synthesis were completely ineffective at inducing early increases of [Ca2+]i in freshly isolated lymphocytes. At supraoptimal mitogenic concentrations: (i) anti-CD3 mAb induced negligible increases of [Ca2+]i when tested in suspensions of freshly isolated lymphocytes, but the response increased progressively during in vitro culturing with IL2; (ii) most, but not all, T clones, when tested in suspension, were responsive to these concentrations of anti-CD3 antibodies in terms of [Ca2+]i; (iii) using the videoimaging technique at the single cell level, it was demonstrated that the anti-CD3 antibodies induced large increases of [Ca2+]i in lymphocytes only under conditions which allowed adherence of the antibodies (and of the cells) to the glass surface. In all T cell types investigated, the [Ca2+]i increases were most often composed by multiple, asynchronous oscillations. The buffering of [Ca2+]i increases, obtained by loading the cells with membrane permeant esters of Quin-2 and Fura-2, inhibited anti-CD3 mAb induced DNA synthesis, but this appeared entirely attributable to a toxic side effect of the ester hydrolysis. The relevance of these data is discussed in terms of their methodological and functional implications for the understanding of the role of Ca2+ in mitogenic stimulation of T cells.

CYTOSOLIC-FREE CALCIUM-CONCENTRATION IN THE MITOGENIC STIMULATION OF T-LYMPHOCYTES BY ANTI-CD3 MONOCLONAL-ANTIBODIES

MURGIA, MARTA;RIZZUTO, ROSARIO;BRINI, MARISA;AMADORI, ALBERTO;POZZAN, TULLIO
1994

Abstract

The effects of anti-CD3 monoclonal antibodies on cytosolic free Ca2+ concentration, [Ca2+]i, were investigated in freshly isolated lymphocytes, T cell lines, T clones and the leukemic T cell line Jurkat with three different methodologies, i.e. classical cuvette experiments, cytofluorimetry and videoimaging. With any technique, concentrations of anti-CD3 antibodies optimal for stimulation of DNA synthesis were completely ineffective at inducing early increases of [Ca2+]i in freshly isolated lymphocytes. At supraoptimal mitogenic concentrations: (i) anti-CD3 mAb induced negligible increases of [Ca2+]i when tested in suspensions of freshly isolated lymphocytes, but the response increased progressively during in vitro culturing with IL2; (ii) most, but not all, T clones, when tested in suspension, were responsive to these concentrations of anti-CD3 antibodies in terms of [Ca2+]i; (iii) using the videoimaging technique at the single cell level, it was demonstrated that the anti-CD3 antibodies induced large increases of [Ca2+]i in lymphocytes only under conditions which allowed adherence of the antibodies (and of the cells) to the glass surface. In all T cell types investigated, the [Ca2+]i increases were most often composed by multiple, asynchronous oscillations. The buffering of [Ca2+]i increases, obtained by loading the cells with membrane permeant esters of Quin-2 and Fura-2, inhibited anti-CD3 mAb induced DNA synthesis, but this appeared entirely attributable to a toxic side effect of the ester hydrolysis. The relevance of these data is discussed in terms of their methodological and functional implications for the understanding of the role of Ca2+ in mitogenic stimulation of T cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/2461302
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact